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Abstract 
 
The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart 

structures technology have led to a resurgence of interest in piezoelectricity, and in particular, in the solution of funda-
mental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of a ra-
dially polarized, spherically isotropic piezoelectric hollow sphere. The sphere is subjected to uniform internal pressure, 
or uniform external pressure, or both and thermal gradient. There is a constant thermal difference between its inner and 
outer surfaces. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary 
differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a sys-
tem of linear algebraic equations. Finally, the stress distributions in the sphere are obtained numerically for two piezo-
ceramics.   
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1. Introduction 

In recent years, there has been an accelerated effort 
and notable contributions on the study of thermo-
electro-elastic coupling behavior in some engineering 
areas, including aerospace, offshore and submarine 
structures, chemical vessel and civil engineering 
structures. These structures can be simplified to a 
transversely isotropic hollow sphere, and can be eas-
ily exposed to a variety of temperature fields in dif-
ferent environments.  

The understanding of mechanical behaviors of pie-
zoelectric structures is thus of significant importance. 
Because of the difficulty related to the particular cou-
pling effect between electric field and mechanical 
deformation, few problems were considered before 
1990. Spherical isotropy is a special kind of trans-
verse isotropy that was introduced in 1865 by Saint 
Venant, who gave an exact solution of a spherically 
isotropic spherical shell subjected to both internal and 
external uniform pressures [1, 2]. 

Problems of radially polarized piezoelectric bodies 
were considered and solved analytically [3, 4]. In the 
literature, the solution for isotropic medium provided 
static behavior such as stress concentration [3]. In 
previous investigations of piezoelectric structures, 
there are some investigations on hollow sphere. For 
piezoelectric materials, in [5], the static solution of 
radial deformation of a piezoelectric spherical shell 
under uniform pressures on the internal and external 
surfaces, and subjected to a given voltage difference 
between these surface, coupled with a radial distribu-
tion of temperature was successfully solved. In [6], 
the static solution of radial deformation of a piezo-
electric cylindrical shell under uniform pressures on 
the internal and external surfaces, and subjected to a 
given voltage difference between these surface, was 
successfully solved. 

The transient thermal stresses in a homogeneous 
transversely isotropic finite cylinder, due to an arbi-
trary internal heat generation were solved in [7]. Due 
to a constant temperature imposed on one surface and 
heat convection into the medium at the other surface, 
the transient thermal stresses in a homogeneous hol-
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low cylinder were obtained in [8, 9]. Thermal shock 
in a hollow sphere caused by rapid uniform heating 
was analyzed in [10]. The dynamic thermal stresses in 
homogeneous isotropic solid cylinders and hollow 
cylinder subjected to thermal shock were studied in 
[11, 12]. 

The thermal stresses in a homogeneous, trans-
versely isotropic, infinite cylindrical shell subjected to 
an instantaneous heat source were solved in [13]. The 
piezo-thermo-elastic behavior of a pyroelectric 
spherical shell was investigated [14]. An exact solu-
tion of functionally graded anisotropic cylinders sub-
jected to thermal and mechanical loads for a steady-
state problem was obtained [15]. The electro-elastic 
problems for a special nonhomogeneous piezoelectric 
hollow cylinder were studied in [16]. The nonho-
mogeneous material has gained much attention be-
cause of its good heat shielding character as well as 
other significant superiorities. 

To date, investigations on the interactions of 
thermo electro-mechanical coupled behavior in ho-
mogeneous piezoelectric structure have mainly con-
sidered static interactions between thermal, electric 
and mechanical fields and transient interaction be-
tween electric field and mechanical field in a nonho-
mogeneous structure.  

In this paper a brief summary of the thermo-
electro-elastic equations for linear piezoelectric solids 
is given. These equations are specialized to spherical 
coordinates and the axisymmetric problem described 
above is formulated. The governing equilibrium equa-
tions in radially polarized form are shown to reduce to 
a coupled system of second-order ordinary differen-
tial equations for the radial displacement and electric 
potential field. These differential equations are solved 
analytically, and on applying three different sets of 
boundary conditions an analytic solution method for 
boundary value problems is developed. The stress 
distributions as a result of thermal difference in the 
hollow sphere are discussed in detail for the two pie-
zoceramics. 

 
2. The constitutive relation and governing equa-
tion 

Consider a piezoelectric composite hollow cylinder 
with inner radius r0 = a and outer radius r2 = b. A 
spherical coordinate system (r,θ,φ) with the origin 
identical to the center of a hollow sphere is used. For 
the spherically symmetric problem, we have uθ = uφ = 
0, ur = ur(r). For a transversely isotropic piezoelectric 

hollow sphere he constitutive relations of a spheri-
cally transversely isotropic pyroelectric medium are 
expressed as [5, 14] 
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  (1a) 
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where cij, eij, αi, βij, and p11 are elastic constants, pie-
zoelectric constants, thermal expansion coefficients, 
dielectric constants, and pyroelectric coefficients, 
respectively. σii and Drr are the component of stress 
and radial electric displacement, respectively.  

The equation of equilibrium is expressed as 
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 (2) 

 
In absence of free charge density, the charge equa-

tion of electro-statics is 
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In order to simplify calculation, the following non-

dimensional forms are introduced: 
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Then, Eqs. (1-3) can be rewritten as 
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1 2 1 12 ( )r
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where, a and b are the inner and outer radii of the 
hollow sphere, respectively, and T0 is the reference 
temperature. From Eq. (6b), we have 
 

( ) 1
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=  (7) 

 
where A1 is a constant. Substituting Eq. (7) into Eq. 
(5c), gives 
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Utilizing Eq. (8), Eqs. (5a) and (5b) may rewritten 

as 
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Substituting Eqs. (9) into Eq. (6a), the basic dis-

placement equation of a transversely isotropic piezo-
electric hollow sphere is expressed as 
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Where 
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The heat conduction equation for hollow sphere 

can be written as 
 

2
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The solution to this equation can be written as 
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where Ta and Tb are temperature in the inner and 
outer surface of hollow sphere, respectively. It is as-
sumed that Ta=T0 so T1 can be derived as 
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Since T1 is known the solution to Eq. (10a) can be 
written as 
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Where F1, F2 and A1 are constant, and 
 

2
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Since u(r) is known, the electrostatic potential is ob-
tained from Eq. (8) 
 

1 22 2
1 1 2 1

1 2

1 2 1
2 12 2

2 2

2 1

e eF e F e

A e I e I A L
H H

α αφ ξ ξ
α α

ξ

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞+ − + + +⎜ ⎟
⎝ ⎠

 (14a) 



 M. Saadatfar and A. Rastgoo / Journal of Mechanical Science and Technology 22 (2008) 1460~1467 1463 
 

Where 
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Then, Eq. (9a) can be rewritten as 
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Where 
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Then, Eq. (9b) can be rewritten as 
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Where 
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Three sets of boundary conditions, henceforth re-

ferred to as cases 1, 2, 3, are examined. In case 1, the 
sphere is subjected to an internal uniform pressure, 
zero electric potential difference across the spherical 
annulus, and free mechanical boundary conditions on 
the outer surface. In this case, the sphere acts as a 
sensor. In the second case, free mechanical boundary 
conditions on both internal and external surfaces were 
imposed. However, there is a uniform potential dif-
ference prescribed across the annulus. In this case, the 
sphere acts as an actuator. For convenience, it is as-

sumed that the potential on the outer surface is zero, 
and the potential on the inner surface is a nonzero 
constant. In the third case, free mechanical boundary 
conditions on both internal and external surfaces were 
imposed. However, there is a uniform potential dif-
ference prescribed across the annulus. For conven-
ience, it is assumed that the potential on the inner 
surface is zero, and the potential on the outer surface 
is a nonzero constant. 

The boundary conditions for each case can be writ-
ten as follows: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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For simplicity the boundary conditions are normal-

ized as: Pi=1 and φ = 1; therefore, the boundary con-
ditions can be written as 
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For each of these cases, the system of linear alge-

braic equations for the constants F1, F2, A1 and A2 can 
be written in the form 
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Where 
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Where the coefficient matrix M is defined in terms of 
column vectors: 
 

1 2 3 4M m m m m= ⎡ ⎤⎣ ⎦  (20) 
 
Where  
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Each set of boundary conditions determines the 

form of the column vector bn on the right hand of 
equation since 0 ( 1,2,3)n nMa b b n= − = ,  
Where 
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The unknown constants F1, F2, A1 and A2 have 
been obtained by Cramer’s rule, and accordingly: 

 
1 2

1 2

3 4
1 2

n n
n n

n n
n n

M M
F F

M M

M M
A A

M M

= =

= =

 (24) 

 
Where 
 

1 0 2 3 4n nM b b m m m= −⎡ ⎤⎣ ⎦  

2 1 0 3 4n nM m b b m m= −⎡ ⎤⎣ ⎦  (25) 
3 1 2 0 4n nM m m b b m= −⎡ ⎤⎣ ⎦  

4 1 2 3 0n nM m m m b b= −⎡ ⎤⎣ ⎦  

 
3. Numerical results and discussions 

The numerical results are drawn in diagrams show-
ing the variation of stress and potential across the 
thickness of the hollow sphere. Mechanical and elec-
trical and thermal properties of piezoelectric materials 
are listed in Table 1 [17]. 

The plots in the figures depict results for each of 
the boundary conditions, with different aspect ratio, 
η=1.6, 1.8, 2 .The plots in the figures depict results 
for Ta=T0 and Tb=3T0. All quantities are plotted ver-

sus dimensionless radius r
a

ξ =  . Since 1 ≤ξ ≤ η, 

the plot for a given aspect ratio will terminate at a 
respective value of η. In Figs. 1, 2, 3 and 4, the pie-
zoceramic number (1), is shown by solid line and the 
piezoceramic number (2) by dashed line.  

 
Table 1. Piezoelectric property. 
 

Property Number(2) Number(1) 
C11 (all GPa) 111 139 

C12 77.8 77.8 
C13 74.3 74.3 
C22 125.6 139 
C33 111 115 
C23 74.3 74.3 

e11 (all c/m2) 15.1 -5.2 
e12 

e13 

-5.2 
-5.2 

15.1 
-5.2 

αr(1/k) 2×10-5 2×10-5 
αθ(1/k) 2×10-6 2×10-6 

P11(C/m2k) -2.5×10-5 -2.5×10-5 
β11(C2/Nm2) 5.62×10-9 3.87×10-9 
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In Fig. 1, results are shown for case 1, where inter-
nal pressure is applied. The compressive radial 
stresses plotted in Fig. 1(a) are interestingly maxi-
mum in the interior surface. As the aspect ratio η  
increases to 2, the maximum compressive radial stress 
shifts to the inner radius. The hoop stress shown in 
Fig. 1(b) decreases from the inner to the outer radius. 
The magnitude of hoop stress increases with increas-
ing aspect ratio for piezoceramic number (2). The 
compressive hoop stresses are interestingly minimum 
in the interior surface for piezoceramic number (1). 
Fig. 1(c) shows the resulting induced electrical effect, 
and an electric potential has developed through the 
thickness of the sphere. 

 
  piezoelectric number 1 

----- piezoelectric number 2
 

 

  
(a) 

  
(b) 

  
(c) 

 
Fig. 1. Case 1: Plots for stresses and potential for η  = 1.6, 
1.8, 2 and Tb/Ta=3. 

Fig. 2 shows the results of case 2 (purely electrical) 
boundary conditions. The tensile radial stresses plot-
ted in Fig. 2(a) are interestingly maximum in the inte-
rior surface. As the aspect ratio η , increases to 2, the 
maximum radial stress shifts to the inner radius. The 
piezoceramic number (2) has greater stresses than 
piezoceramic number (1). The hoop stress shown in 
Fig. 2(b) decreases from the inner to the outer radius. 
The magnitude of hoop stress increases with increas-
ing aspect ratio for piezoceramic number (2), and the 
piezoceramic number (2) has greater stresses than 
piezoceramic number (1). Its magnitude decreases 
with increasing aspect ratio, and its value at the mid-
dle radius approaches zero for large aspect ratios for 
piezoceramic number (1).  

 
  piezoelectric number 1 

----- piezoelectric number 2 
 

 

  
(a) 

  
(b) 

  
(c) 

 
Fig. 2. Case 2: Plots for stresses and potential for η  = 1.6, 
1.8, 2 and Tb/Ta=3. 
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Fig. 3 shows the results of case 3. Stress in this case 
change with changing electric potential field direction 
in comparison with the previous case. The compres-
sive radial stresses plotted in Fig. 3(a) are interest-
ingly maximum in the interior surface. The piezoce-
ramic number (2) has greater stresses than piezoce-
ramic number (1). The hoop stress shown in Fig. 3(b) 
decreases from the inner to the outer radius. The 
magnitude of hoop stress increases with increasing 
aspect ratio for piezoceramic number (2). Its magni-
tude decreases with increasing aspect ratio, for piezo-
ceramic number (1).  
 

  piezoelectric number 1 
----- piezoelectric number 2

 

 

  
(a) 

  
(b) 

  
(c) 

 
Fig. 3. Case 3: Plots for stresses and potential for η  = 1.6, 
1.8, 2 and Tb/Ta=3. 

4. Conclusions 

In this research the static behavior of radially polar-
ized piezoelectric hollow spheres was studied and the 
following results were concluded: 

Thermal gradient can vary radial stress and hoop 
stress in a piezoelectric hollow sphere.  

In geometrically symmetric shapes, e.g., a piezo-
electric sphere that can be polarized in radial direction, 
the mechanical and electrical effects can be investi-
gated separately. The analysis approach presented in 
this research can be applied on all radially polarized 
piezoelectric spheres. 

A solution to the problem of static radial displace-
ment and potential field of a piezoelectric spherically 
isotropic hollow sphere with thermal gradient, polar-
ized in the radial direction for three different sets of 
boundary conditions was obtained. 

Dimensionless stress distributions and electric po-
tential curves were drawn and discussed in detail for 
two piezoceramics, and the effects of different 
boundary conditions as well as piezoelectric materials 
on the stress state in piezoelectric hollow sphere were 
studied. 

The hoop stress compared to the radial stress 
causes failure of the elastic hollow spheres. For two 
piezoceramics, at the second loading case (Fig. 2), 
hoop stress distribution on internal surface of the 
sphere is tensile for each aspect ratio which provides 
an appropriate location for fatigue crack growth. 

The technological implications of this study are 
significant, e.g., the amount of hoop stress resulting 
from mechanical loads in a hollow piezoelectric cyl-
inder can be reduced or neutralized by a suitably ap-
plied electrical field. 

 
Nomenclature----------------------------------------------------------- 

εij   : Component of strains 
ur   : Radial displacement [m] 
cij, eij, αi, pij  : Elastic constants [N/m2], piezoelectric 

constants [C/m2], thermal expansion 
coefficients [1/k], and dielectric con-
stants [C2/Nm2]            

λi, βii  : Thermal modulus [N/m2 K], and pyroelectric 
coefficient [C/m2K] 

σij, Drr : The component of stresses [N/m2] and radial 
electric displacement [C/m2] 

ψ(r) : Electric potential [W/A] 
T(r)  : Temperature change function [k] 
r  : Radial variable [m] 
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a, b  : Inner and outer radii of piezoelectric hollow 
sphere [m] 
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